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The kinematics of viscoelastic fluids with additive deformations is considered. A kinematic
relationship is obtained between the total and viscous strain rate tensors and the elastic
strain tensor, which underlies the axiomatic construction of rheological models of such
fluids. A representation is found for the components of the elastic strain rate tensor in
terms of observed quantities, which permits an analysis of the change in different scalar
characteristics due to a change in the elastic state of the fluid. The developed method is
also applicable to the investigation of other continua with complex deformations. The ob-
tained results are later applied to construction of a nonlinear rheological model of a com-
pressible viscoelastic fluid of Maxwell type.

The viscoelastic media considered below, whose total deformation at an arbitrary time
can be represented as the sum of elastic (reversible) and viscous (irreversible) deforma-
tions. The viscous deformations are hence defined as residual deformations with instantane-
ous liberation of the medium from all elastic deformations. The question of the physical
realizability of such a process is discussed below, and it is meanwhile sufficient that it
can always be done meaningfully in a small neighborhood of the considered material
element. Fixing some initial state in which the viscous deformations are assumed zero, the
elastic components of the total deformation of the medium can be determined by an analog-
ous means,

1. Following Sedov {1], let us define two coordinate systems in the volume filled with
viscoelastic fluid: a fixed Eulerian reference system {zf} with basis vectors J;end a
Lagrange convective coordinate system {£&¥} frozen in the continuum element in such a
menner that the values of £# corresponding to different individual points of the medium, are
time-independent. Investigating only the total deformations of the medium, we consider two
positions of the continuum relative to the {x‘} coordinate system, to which two different
bases of the Lagrange coordinate system ff‘} correspond:

1. An initial position with basis vectors J,(1} ; in this basis definite fixed points
correspond to individual points of the medium.

2. A position of the deformable medium with basis vectors ) .(2). The disposition of
the vectors J,(2) relative to 31(‘) at a certain time determines the total deformation of the
medium accumulated up to this time.

Motions of continum elements associated only with the viscons or only with the elastic
components of the total deformations may also be considered formally. This permits the
analysis of still two other ‘intermediate’ positions of the continuam elements, to which two
other bases of the Lagrange convective coordinate system will correspond [1].

1. A position of the medium which wounld experience only, viscous deformations, with
basis vectors 3J,(3), The basis J,® plays the part of initial basis with respect to elastic
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deformations and the part of final basis with respect to the viscous deformations. The dis-
position of the vectors I, relative to (1) determines the viscous deformations of the
medium, and the disposition of 3 @ relnive to 3;® the elastic deformations. At each
instant the position (3 of the medlum is obtained from the position (2) by the process of
fnstantaneous liberation of the medium from all elastic deformations.

2. A position ) of the medium, which undergoes the elastic total deformation com-
ponents, can also be considered anslogously to the position (3). The corresponding basis
vectors Si(‘) are the initial basis for the viscous, and the final basis for the elastic de-

formations.
It is clear thet representations of individual points of the medium with different mean-

ings, correspond to the positions (), (3), 4) of the medium.
For the lengths of a small segment composed of the same continuum points, we have
at different locations
dr, = d§M), ds? = g, WABdE, g™ = (3,MD;0)) k=1,2,3,4
In conformity with the presence of four foundamental forms, the various tensors may be
considered in four spaces governed by the various positions of the continuum elements and

corresponding to the different bases of the Lagrange coordinate system which have been
introduced[1].Let us establish the correspondence

dsg? = g dE'dE’ = gda'dal, ds? = g; ALY = g dalidzli)
ds¢* = g;("dEAE = g, ;dzhdzth), g4 = (9:9;)

Hence, it is seen that all the tensors introduced in spaces (3), (3) and (4) can be
considered simultaneously as tensors defined in one basis J;, but as before, in different
spaces corresponding to the fandamental forms ds,2, dss®2 and ds,2. The quantities dz()
and dz{'] play the part of components of the vectors dry anddrginthebasis J;. Similarly,
all the tensors may also be referred to any other basis.

Using the bases 3;(’, ;) and J;(3, let us introduce the total E, the elastic (E),
and the viscous [E] strain tensors by utilizing the relationships

E = Ei532i3-3j = 853{3j, Eo = 8‘531‘315
(E) = £4;3:'3y = ¢(;;9'd’, (E)o = 495'd5’
[E] = e[ij]33i33j = e(u]3'3’, []‘:]o = e[ij]31{31j (1.1)

& =2 (€u'M —&u'M),  euy) =12 (g —84®), ey = Va (85 — g4V)

Here the subscript zero refers to the initial-state spaces for the appropriate deforma-
tions. The quantities €;;5, €5, €[ij} and €;;, €uj, €[ij] can be considered as functions
of t and £m or ¢t and xm, The Jacobian of the appropriate transformation is assumed not to
be zero. Other tensors associated with the total, elastic and viscous strains in different
bases and spaces may be determined analogously.

Using the second possible method of describing the medium deformation, and introduc-
ing the bases 3;(V), 3, 3,0 we obtain instead of (1.1)

(') = ;243 = €'Y, (E')o == £;,D1'3)
[E'] =e;;)3:"9, = ¢,;9'7, [E'Jo = e1;,9:'9 (1.2)
ean="h ;" — g, e =" (8% — 85

The previons expressions in (1.1) are valid for E, E, and epy51 -
Let us note that, in general, €; ¥ €;)’ and £p;; & (;;;". These assertions follow
directly from the noncommautativity property of finite deformations, and they correspond
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physically to the fact that the tensors (E) and (E ) characterize the state of different
material fibers. The components of these tensors in the Euler basis should be the same
because of the physical uniqueness of the deformation process. For definiteness, only the
first method of describing the deformation is used below as being more natural for the forman-
lation of rheological models of viscoelastic fluids.

2. According to the definition (1.1), an identity expressing mathematically the postul-

ate of additivity of the deformations
&y = &) + s 2.1)
holds for the tensor components £;;, &(is) and g(;] .

This relationship has no tensor character in the sense that it is not satisfied for con-
travariant or mixed components of the strain tensors. This is associated with the fact that
different metric tensors must be used to raise the indices in the different terms of (2.1).
However, upon passing from {£ 4} to any other Lagrange coordinate system, {2.1) tranaforms
according to the customary tensor rules. Let us note that the additivity relationship (2.1)
does not generslly hold for the quantities €;;, €;5 and ep;;;.

Conaidering (2.1) at close times, we obtain an egquation for the increments of the
components £;;, €;y end ©[ij] in the time ds:

de;; = degj) + degijy
De,; De,.. De il
deﬁ fooemd —5:—,dt N dﬁ(ij) p==4 --b—‘-;—]ldt, d&[u] m— —bE;Ldt (2.2)

Here D {...)/Di is the symbol of convective differentiation of the tensor component
with respect to time (for constant £™). Definitions of de;;, de(;;) and deg;j; interms
of the corresponding derivatives in (2.2) follow from the results in [1]. Let us note that
these derivatives are taken relative to different positions of the deformable continuum,
which is manifested in the definitions of the corresponding tensor components in the Euler
basis.

Thus, by utilizing known rules of transforming convective tensor derivatives with
respect to the time {1 and 2], we obtain for the total strain rate tensor and for the quantities
de;j the following Formula:

T =703,9y = (D (.. /D) (€;3:°0,) — 1y = {(3(...)dt + ™V ) e +
+ (v‘vm) e"u‘ + eimv]‘ v'"} 3‘3’, dsi}‘ = T“’(“,) dt

An analogous formula holds for the tensor (I')* which has the components De,;, / Dt

in the basis J;(®), and for the increments d€(;j, expressed in terms of these components.

Converely, for the viscous strain rate tensor and the quantities dsw] we obtain the
formal representations

‘r} = Y[{?%“ 3*335 == (D ( .. ')/D t) 5(“;]33{33} == 7“”3‘35 =

auml ™) s 3)
= {(D (---)/ DY) 151+ "a‘g;“ el + eim) -'EET'} 3%y, degyy == '{éﬂ dt

Here ™! are velocity components associated with the viscous fluid displacements.
As js known [1], the partition of the total velocity v!, as well as the antisymmetric tensor
@y corresponding to the total vortex vector, into elastic X, ©¢j) and viscous of'], D453
components is not unique. However, the quantities V(ij) and 7¥[ij] are uniquely defined.
Only ander this condition is it possible to speak of a specific physical (elastic, say) state
of a medium.

Therefore, from (2.2) we obtain the fundamental kinematic relationship for the strain
rates

(Deiy/Dty e, + Tet™ = 14® (2.3)
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Let us emphasize that the '\'g}] in this ‘relationship are viscous strain rate tensor
components in the basis 3;(3), and all the other quantities in (2.3) are tensor components
in the besis 3,(),

Let us introduce dnf as components of the vector dry = d£iD;® in the basis I;).
The quantities dn play the same part, in principle, as do the dz(), and dxi, mtroduced
above. Introduction of dnt permits transformation of tensors defined in a space correspond-
ing to position (3 of the deformable continuum, to the basis J,(2) exactly as the intro-
duction of dz(D) and dzli] pemnitted transformation of the tensors defined in spaces (3 or
® 1o the Euler basis. The quantities dnf and d£4 are connected by affine transformation

formulas [1] d'l —c* dem

The matrix C entering here may be considered as a matrix defining the transformation
of the basis vectors 3, . 3,2, referred to the same space. For it we have the
representation 1]

C=c® (g¥—2¢)", C=(@g®—2¢)e™, g®=]g,A], e=[es;| (2.4

Here K is an antisymmetric matrix corresponding to the vector of rotation of the
principal elastic deformation axes, and the prime denotes the transposition operation.

We have the following representation for the viscous strain rate tensor components
'Y([P] in the basis J;(3 in ters of components of this tensor in the basis 3 (2),

1O =CC, ¢ =]r{l| (ko= 2,3)
Substiuting this into (2.3) we obtain a relationship which may be considered as a
tensor

(D (- - D ey + C T ¥ €75 = 142 (2.5)

The kinematic relationship (2.5) plays a fundamental part in the formulation of in-
variant rheological equations.

3. In addition to (2.5), the relationship [1]
Tui + Tty = Tijs Tii = Y2 (Vav; + V04
Tup = Y2 (Vi) -+ Vivw),  Tuin = Y2 (Vs + Vivna) (3.1)

can be obtained independently.

The equality (3.1) may also be considered as a tensor relationship, and in particular,
it can be written for the strain rate tensor components in the basis J,(2). Evidently, rela-
tionships (3.1) and (2.5) should agree because they contain the same information on the
motion of the medium. From (2.5) and (3.1) we then obtain the following tensor Eq.

T(‘]) - (D( )/Dt) 8(11) _L C men]Cn TE?;] (32)

The quantities y{f}) are components of the elastic strain rate tensor (I') in the basis

3@, Asis easily seen, the tensor (I') differs from the tensor (I")* introduced earlier,
which is the kinematic characteristic of the motion associated with a change in both the
elastic and viscous strains. This is becanse the tensor (E) itself describes the true elastic
state of the material elements of the medium ambiguously.

In fact, let us introduce the length elements ds,! (k = 2,3) along the i-th principal
axis of the tensors (E), and (E) in appropriate spaces. It is clear that the differences
ds,* — ds; are uniquely defined by the components E(ii) of the tensors (E), and (E) in
these axes. The elastic state of the medium is defined uniquely by values of the principal
elongations (1]

. ng‘ —_ dSal d-"zi - ds:li

T T gt i T T et

or the eigenvalues
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€)= 83 LGii)r tw =824, (=1,223)
of the tensors (E), and (E), on which the quantities %;,° and *(i) depend uniguelv. It is
easy to see that these quantities are functions not on(ly of the differences ds;' — ds,i, but
also of the elements ds,é — ds; !, which are determined equally by the development of
viscous strains in the system. Hence, the quantities £ ;;, may be considered as represent-
ative characteristics of the elastic state of the medium only when the viscous motions do
not result in changes in the elementary lengths in the material, i.e., V[ij;) = 0. Correct
expressions are obtained for y, ), evidently, if £(;)is differentiated with the condition of
invariant lengths of the vectors J;® as well as the condition of constant £™, is imposed,
or equivalently, the condition of constant diagonal components of the metric tensor g,“_in
the principal axes of the tensors (E)s, (E). Let us note that rotations of the vectors ;¥
relative to ;{1 are not fixed in such a differentiation, and may be arbitrary because they
do not affect the change in material lengths.

Using reasoning similar to that which was used in introducing the Jaumann derivative,
we see that the correct values of )‘(‘D and y(m(z) are obtained if it is formally considered
that ¥;, = y(qy) in differentiating €(ij) and later passing to the Fuler basis. We hence have
the lol{owing equation for Yip in the Euler basis:

Tas = (0/0t + V™7 ) €iiy 4 €im Y03 + T €lmi) +

+ eim 07 + 0"em)), w;; = /3 (Vw; — Vivs) (3-3)
The following representation
@ . .
16 = (D (- DO e — em TN ™ — 125 Ve (3.4)

corresponds to (3.3) in the Lagrange besis J;(2) .
Let us compare (3.2) and (3.4). To do this, we represent the matrices C and C’ from
(2.4) as

C = (g(2) — 2 e)'/: _*_ (eK _— g(Z)) (g(?) —_2 a)'/l
C’ = (g(2) —_— 2 !)l/z + (g(z) J— 2 e)‘/: (e‘K — g(?))

The first members in these expressiona are independent of K, the second vanish as
K -+ 0. We have the matrix equality

CYOIC == (g®-— 2¢)" (4@ 4 @ (K — g@) 4 (e7K — g@) y@
+ (K — g@)y@ (eK —. g®)] (g — 2 )"

In constructing rheological models the tensors (E) and [T are expreased as tensor
functions of the same tensor T by using some kind of postulates. Hence, the matrices ¢
and y(z) may be considered commutative. Then a comparison between (3.2) and (3.4)
results in the Eq.

(0~ 28) [x® (€5 — g®) + (e — g®) 1@ +
+ (K — )Y (K — g )] (gD~ 28)"s = 0 (3.5)

Eq. (3.5) imposes definite constraints on the possible deformations in the system.
Roughly speaking, (3.5) plays the part of the known compatibility equation for elastic (or
viscous) deformation taken separately. In the general case of finite deformations (3.5)
differs from that customarily used in the geometrically nonlinear theory. Hence, the bases
3;'® and 3;'? are generally introduced into noneuclidean curved spaces corresponding
to the situations of a deformable (3) and (4). Violation of the euclidean conditions is
equivalent to violation of the continuity of the medium under the above-mentioned conceptual
process of freeing the mediam from elastic strains.

It is easy to see that the unloading process for which the viscous sirains remain un-
changed, is not realizable without violating the continuity of the medjum. In fact, let us
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consider the complex of state of a viscoelastic fluid with additive strains. The state of a
system consisting of a viscous fluid and an elastic strained sample submerged therein is
a rough analog of such a state,

Upon removal of the elastic strains, and under the condition that the position of the
individual viscous fluid elements does not change here, we arrive at a state in which ther:
are cavities free of material, as well as sections which simnltaneously contain both, fluid
and elastic body. In other words, we arrive at a space having ‘holes’, which indeed make it
noneuclidean. Analogous reasoning on the euclidean conditions of an ‘intermediate’ space
is expounded in the modern theory of plasticity [1].

In proposing conservation of the continuity of the medium during the actual unloading
process as a necessary condition, we see that the removal of stresses is possible only
after a finite nonzero time interval since this process is inevitably accompanied by addi-
tional viscous strains. From the physical viewpoint, this means that only instantaneous
removal of the extemal forcea acting on the system is actually realizable. Tf a basis 3",
describing the position of the continuum after the actual unloading process, is introduced,
then the unloading process itself may be interpreted as the motion of the bases 3, and
;¥ towards the basis J; until coincidence. It follows from the sbove that the conseptual
process used above for the liberation of the medium from elastic strains can generally be
consistently determined only locally.

Let us note that (3.5), and therefore, the representations (3.3) and (3.4) for the elastic
strain rate tensor components also, can be obtained by completely independent means from
{2.5) and (3,2) by utilizing physical invariance reasoning worked out in [2]. Indeed, accord-
ing to the meaning of the rheological equation, it characterizes the processes occurring in
& fixed material point moving as part of a continuam, and it should contain, in addition to
material tensors and scalars, only observed dynamic and kinematic_quantities connected
(rigid) with just the given point of the continuum. In particular, the rheological equation
should not depend on the parameters describing the rotation of the given material element
during deformation, as well as the rotation of the whole continuum as a solid (rigid) unit.
This is associated with the fact that the rotation of some particles of the medium depends
essentially on the state of the adjacent particles of the medium. Applying this reasoning,
we at once obtain (3.5) with all the resulting corolleries.

The relationships (2.5), (3.3) are utilized below to construct a theological model of a
compresaible Maxwellian viscoelastic fluid with geometric and physical nonlinearity. A
Maxwellian fluid is customarily defined as a medium with additive deformations, which are
connected with the stresses in the flow by utilization of additional postulates.

4. It is customarily assumed [2] that the stress tensor Py in the elastic element of a
Maxwellian model is connected with the elastic strain tensor év alinear relationship

Py =2 )) (4.1)

Here g is the shear modulus of the fluid. The relative change in volume associated
with the elastic strain, can be written as

= [(1—2e) (1—2e,) (1~-2e] " — 1 (4.2)

Here g; (i = 1, 2, 3) are the eigenvalues of the elastic strain tensor in the Lagrange
basis.

In principle, as high a stress as desired can be realized in a viscoelastic medium. In
particular, it can be considered that some eigenvalues of the tensor Py are greater than
%y so that the corresponding quantities 2¢; are greater than unit. Recalling the definition
of 2£;;) we see that the strain described by Hooke’s law (4.1) leads formally to a change
in the signature of the metric tensor with all the resultant consequences. It is seen from
{4.2), say, that in this case » becomes complex. Avalogous paradoxes results also from
an attempt to consider energy processes in viscoelastic fluid flows.

Moreover, it is known that even for a generalized elastic shear strain the condition of
conservation of the specific volume [ 3] should be satisfied. It follows from (4.1) and (4.2)
that this natural requirement is not satisfied for finite deformations. For example, for
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simple shear we have

x=[—(p /p)Pl™"" — 1 £0

Here p, and — p, are eigenvalues of the stress tensor.

Even for small elastic deformations the assumption that the given viscoelastic medium
possesses a multilateral compression modulus exactly equal to 2/3u actually corresponds
to (4.1). Taking into account that real media possess a shear modulus on the order of 10%—
107 dyne/cm?, we see that this assumption is equivalent to an assumption on very high
compressibility of the medium. The compressibility of viscoelastic media in experiments
is quite negligible, even at the pressure p > pu.

The latter difficulty of a Maxwellian model is closely connected with the problem of
describing an incompressible viscoelastic fluid. It can be considered ‘incompressible’,

i.e., as not resulting in a change in specific volume, the total strains in the flow, or this
requirement can be referred just to the viscous member of the total strains.

In the first case it must be implicitly assumed that, in general, the relative change in
volume during elastic deformation is cancelled by a change in specific volume of opposite
sign, which is connected with the viscous strain and occurs because of the effect of some
additional physical factor.

In the second case it is assumed that the single reason for a possible change in
specific volame, i.e., in compressibility of the medium, will be the elastic strains. The
first hypothesis requires the introduction of some new compressibility mechanism, differ-
ent from elastic strain (for example, the explicit consideration of structural changes in the
moving fluid). The second hypothesis is perfectly natural within the scope of the expounded
scheme, has sufficiently strong physical foundations, and can be formulated by analogy
with the same hypothesis in the hydrodynamics of an incompressible viscous fluid.

Therefore, the necessity arises to replace the linear relationship (4.1) by some more
adequate relationship without resulting in physical paradoxes. Let us note that, in principle,
even Newton’s law postulated for a viscous element, may be replaced by some nonlinear
relationship between the streas tensors and the viscous strain rates. However, it can be
assumed that such a substitation does not substantially affect the quality of the considered
viscoelastic media, and leads only to a quantitative change in the characteristics of vari-
ous flows.

5. Let us represent the stress tensor Py as

pﬂ.:—_pgﬁ_{’*rij- Pl:"3p+7'1 (51)
Here p, and T, are the first invariants of the tensors Py and 74, g,/ are metric tensor

components. The first member on the right side of (5.1) describes purely reversible ‘ideal’
transfer of momentum in the system, and the second member defines the irreversible ‘visc-
ous’ transfer of momentum. The most general linear relationship between Ty and the viscous
strain rate tensor Yj;;) are

T =27 (rpin— "/aTugy) Elgi5, I'h = gﬁT[i}]
Here 1 and { are the fluid viscosity coefficients. As will be seen below I'; = 0. Hence

it follows T, = 3T, = 0. Taking the latter into account, we obtain Newton's law to con-
nect the tensors y(;;) and r;; in the form

Tij == 27y (5.2)

The natural extension of (4.1) to a body with arbitrary continaity is represented in the
physically linear theory by the relationship

P 1 P . 2
gﬁ=§7('gii+?l:(pij—.——3-gu), K=2A+4 TR 5.3

The bulk modulas X is defined in terms of the Lame coefficient A and p in such a wa
that the relative change in volume connected to the second member on the right side of (5.3)
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would equal zero identically for small deformations. It is possible to attempt a generaliza-
tion of (5.3) to elastic incompressible media with finite deformations by replacing the first
{nvariant p, of the tensor Py in (5.3} by a fanction of all three invariants P of this tensor
such that the second member in the modified dependence {5.3) would not, as before, result
in a change in the specific volame, This fanction has the meaning of a Lagrange multiplier
in some variational problem {1]. Replacing 1/3 P, in (5.3) by f(P)) and allowing K - oo, we
obtain the incompressibility condjtion as
(1—2¢,) (1—2¢ey) (1—2e;) =1
Introducing the nondimensional parameters f = ug, pij = pn;; and the invariants
I =gy + 0y + 1y, = am, -+ nng + ngny, Il = nyngng
we obtain an equation for g
@ 4+ (3 —Hpe* - (32l + Mo — (I, — I, + 1) = 0 (5.4)

It is clear that it is necessary to take the root 9 of this equation which equals 1/3[l;
for m; «C 1. It is easy to see that the strain described by the modified relationship (5.3)
results, as before, in a change in the signature of the metric tensor. For example, let
Ry ==x, Ry =7y == — Y,z so that Il, = 0. Then in the particular case x =~ 3, {5.4) has
the solation @ =0, and 1—2g, <C 0, 12 g, < 0, which also denotes a change in signature.
Moreover, if the finite modulus K is again introduced, the pure shear strain results, as
before, in a change in the specific volume. Hence, the considered phenomenological
method of extending (5.3) to a system with finite deformations does not result in obtaining
a8 consistent relation between the stress and elastic strain tensors. i

Let the free energy of unit volume of a solid in the deformed state be # (€;’). Con-
sidering a change dF in the quantity F for a change dgij in the elastic strain tensor, let
us write

dF = plide’s + 1, M (&) (de'y)? - p (e) de¥ided; (5.5)

To simplify the writing, the parentheses in the subscript notation of the elastic strain
tensor have been omitted here and below.

This expression is simply a series expansion of the increment in free elastic strain
energy in the neighborhood of some deformed state characterized by the quantities g; ./,
The possibility of selecting such a state as initial has been stressed in [1]. Evidently if
31’ =z (), i.e., a state in which there are no strains or residual stresses, has been selected
as initial state, then the first term drops out in the right side of {(5.5).

In principle, the most different forms of the function F can be utilized. We assume here
that the coefficients A and y in (5.5) are constants. This assumption is equivalent to postul-
ating ‘homogeneity’ of the relative strains, their independence of the strain in the undeformed
state of the material. Applying standard methods to (5.5}, we obtain

dei! = — 7281+ 5. (dpil — dp o) (5.6)

In contrast to (5.3), which expresses the linearity of the strain process as a whole,
the relationship (5.6) expresses the linearity of this process in the small. If this rela-
tionship were to admit of direct integration, the linear law (5.3) would then be obtained, or
in the particular case K = 2/3y, the law {4.1). In the general case of finite deformations,
such integration is impossible, because of the nonadditivity of the increments del:j in
successive deformations [1].

Let us formally represent the elastic strain process as a process passing through such
intermediate states that the tensors g; )-' in these states have the same principal axes as
the tensor€;;j in the final deformed state. From (5.6) we have the following Eq. with
reference to the principal axes:
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Herel,” is the length of some linear element along the i-th principal axis in the inter-
mediate deformed state, which equals I} in the initial and /; in the final state. Integrating
this equation we obtain

° 1
L= exp[—~3%\; =+ gl],(Pa—P)]

Using the definition of the relative elongations of material elements along the principal
axes in terms of eigenvalues of the elastic strain tensor in the final state, and transform-
ing from the equation for &; to the corresponding tensor equation, we obtain the following

equation counecting £;jand p; in the convective basis associated with the final deformed
state:

E =1 (G —e), E—[egl, P=]pyl. Tl G=lat 6

He— 5 G (P—pG) = — 5.6+

3K 2p

Completely analogously, we obtain for the elastic strain tensor E, defined in the space
of initial states

}jo == l/r_g (32"9 — (;0) (58)

The inverse relationships to {5.7) are (5.9}

= —-}oIn(G—2E), P=—puln(G—-_k)}+32pG, a=1,03whk—1)

The ‘true’ strain tensor H has repeatedly been utilized earlier in the theory of finite
elastic deformations, in particular, Hencky postulated a linear connection between P and H.
From (5.9), we have for the first invariants P, and E, of the tensors pyand €;;

P=—3p=——p(1+3a2)"In[(1—2e)(1— 2e)(1 —2&)]
Ey=1s(3—eh ety @y (p—3ap)  (5.10

The compressibility of a viscoelastic medium characterized by the relationships (5.7)
to {5.10) is determined entirely by the magnitude of the mcdulus K when the hypothesis
used in Section 4 that the sole reason for the change in the specific volume of a medium is
its elastic strain, is satisfied. It is sufficient to consider just the hydrostatic compression
of such a material. For Py=—p (i=1, 2, 3) we have

€1 = &3 == g3 == (1 - CXP ), x-—:exp%’f—-i
On the other hand, the shear strains do not generally cause a change in volume for any

K, as should be. For example, for simple shear we obtain

81:%(1———0.\1):}%’1}), 82=%(1—~0-\'P€:2)7 e3=0, %=0

Evidently the eigenvalues of the tensor H are always negative, so that the paradoxes

associated with the change in signature of the metric tensor do not generally arise in this
case.

6. Utilizing the results of Section 3, let us represent the kinematic relationship (2.5)
as

@10t +v™"V,) €5+ ev™ + (Vio™) eni +
4- (8™ — 2":") Timi] == Yij = Ya (Viv,' + v;v) (0.1)

Electring the elastic strain tensor components and the velocities of total displacement
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of the medium as goveming variables, we obtain a rheological equation from (6.1) when
(5.2) and (5.9) are taken into account

2n[(0/0t + vV ) €5 4 €07 -H (Vo) epi) —
— R (8™ — 2e.™) {In (G — 2E)}; 4 (1 + 3) p (i, — Zey) = 2y, (6.2)

Taking account of the definition of E in terms of P or T according to (5.7), it is also
easy to obtain a rheological equation in terms of the variables Pij or 7y from (6.2).

The components of the Hencky tensor H can be expressed in terms of € by utilizing
the Lagrange-Sylvester formulas. Moreover, using the Hamilton-Cayley theorem, we arrive
at a quadratic equation in €y (or in Pije ru) with coefficients dependent on invariants of
the tensor E.

For small elastic strains the tensor H may be expanded in a series in E. We then
obtain an approximate from (6.2)

n [(0 / ot ":" Umvm) eij _T' eirnv)vm '{" (v.ivm) emi] +
+ (8™ — 2ei) [pe, = Vo (14 32) gl = Wy (6.3)

Or in terms of r,, this Eq. is (we use the approximate relationship Il =~ E) follow-
ing from (5.7))

0 [(6/(9[ '{' Um\;;m) pij' _.L‘ pim’V’jvm -} (‘-V ivm) pmj’] +
+ (& — 1) Ty 2y, pii = 1 — (1 + 30) pgy, (6.4)
Here @ is the single relaxation time of the fluid.
For an incompressible fluid X » o0 and a = .= 1/3. Hence, {6.2) becomes

M@/ +2" Ve He, T A (Vo e ] —

1
m . N
— k6, —2¢7)Un (G — 2E)} ;== 2y
For an incompressible fluid (6.4) is written in the form
8[(@/ac+ Umvm) Tii + Timvium 1 (vium) Tmi] + (6im B p'_l‘r‘ir?) T = 2rni.f

It can be expected that the compressibility of a viscoelastic medium will turn out to
be particularly essential for the investigation of the stability of various stationary flows
because it may, in principle, cause the appearance of elastic compression-rarefaction
waves, different from acoustic waves, in the flow, which may in turns stimulate the develop-
ment of the customary hydrodynamic instability. A possible role of the effects of compres-
sibility in the development of hydrodynamic instability in viscoelastic fluid flow is dis-
cussed in [4].

Let us note that the quantity p introduced in (5.1) and playing the part of the effective
external pressure is in the rheological equation. This is connected with the fact that for a
nonlinear dependence between the elastic strains and the stresses, the capacity of the fluid
to further absolute elastic strain depends on the already existing strains. This latter permits
the comprehension, to some degree, of known experiments on stabilization of viscoelastic
fluid flow with the rise in external pressure.

Let us turn to the kinematic relationship (6.1) with the tensor gi/. Taking account of
(3.3), we hence obtain the equality

8%y + &y = &V (6.5)

The right side here is the rate of change of the specific volume of fluid, the first and
second terms in the left side of (6.5) are the rates of change in specific volume due to the
elastic and viscous strains, respectively. According to the assumptions made in Section 4,
Iy = g"v(j1 == 0. which justifies the formulation of Newton's law in the form (5.2). The
first member on the left side of (6.5) satisfies an equation which resuits from (3.3)
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8y = (010t + 0™V ) glle,; + 257, yim)

It is hence seen that g'y(ij = g9%:5', where Yij satisty the matrix Eq.
(G—2E)y" == (3/dt +v"V,) E, =141
Y =(G~—2E)1@/6t + ™V, )E

Here it has explicitly been taken into account that the metric tensor of the Euler
coordinate system is independent of time.
For the fluid density p, we therefore have Fq.
i /70 m 0 ‘s it -
ry (—OT + v -——) p=— g‘JT(ij) == — {{(G — 2L) 1}"_ (-&* -+ Umvm) €i; (6.7)

a.L"”

(6.6)

Eq. (6.7) plays the part of the thermodynamic equation of state of a viscoelastic
medium. Let us note that by virtue of (6.5), Eq. g'y(;;; = O follows directly from (6.7)
and the continuity equation for the total deformations ot a viscoelastic fluid.

7. Besides the rheological equation, we have the dynamic Navier-Stokes equations
and the continuity equation for the description of viscoelastic fluid motion. In the Euler
coordinate system they are:

9 m ,m F:]
P(W + v Vm) vy = — Dim -IA pfi. _5?_ + vm (.‘)U,n) — O (71)

It is easy to see that (7.1) together with (6.2) and (6.7) form a complete system of
equations to determine the ten unknowns v, Tyj,pandp which describe the mechanical
behavior of the medium. There are in all five independent quantities 7;j since they are
connected by the condition T, = 0 which follows from Eqg. g”\y“}.] =0,

From the first equations of (7.1), we obtain by the customary means [1], an energy
equation in which all the quantities are referred to unit volume of medium

dE = dAl -1- d/l2 -{-» d;lg, dl’ — pyidlvi fi = fi“) -}_ fi(‘l)
. : . 2
dAy = pfividt 4 dA', ddy= pfi®vdl, ddz= — pyydt (7.2)

Here dE is the change in kinematic energy of the fluid, d4, is the work of all the
external forces, where d4 “is the work of the external surface forces, d4, the work of the
potential volume forces, and dA4, the elementary work of the internal surface forces. The
quantities f‘(l) and f,(2) are the nonpotential and potential mass forces, respectively.

Taking account of (3.3) we obtain from (6,1}

-— 4. — pli — pil . pila
dAy = py, dt = pYy dt 4+ p ‘{ii]dt (7.3)
The first member on the right side of (7.3) is the elementary work of the intemal
stresses on the elastic strains of the medium and equals the increment dF in the free

energy of elasticity. The second member on the right in (7.3) describes viscous energy
dissipation Wdt. Using (5.2), we obtain an expression

W=yt py = @t (7.4)
The identity & Tij ~ g’y;;j; = O was also taken into account here.
For the increment in free energy of elasticity, we obtain from (3.3)

d]v‘ = pUT(,’j) dt = pij (0 / Ot '{" vmvm) ei;_dt _!“ QPijeing?).)dt
As in Section 3, it is easy to see that p"zy(”) = P’ ¥y . where the matrix of the
coefficients of y;;“is determined by (6.6). Hence, we have

dF = p"{(G — 2E) 1} (8 /0t -4 v'\y) emudt
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Inserting the components hyj of the tensor H from (5.9), we hence obtain

dF = 2uh" dh;; + 3apg’ dhy, (7.5)
In particular, from {7.5) follows the free enérgy Eq.
F = const + u (hy® 4 ke + hg®) -+ 3ap (By + hy + hy) (7.6)

Here h; are eigenvalues of the tensor H defined in (5.10). For an incompressible fluid
the last members in (7.5) and (7.6) vanish since the sum of the quantities h; equals zero
for ¢ = — 1/3.

It is analogounsly easy to determine the other thermodynamic functions associated with
the elastic strain.

Substituting (7.3) into the energy equation (7.2), we obtain a new Eq.

dA, + dA, = dE - dF + Wdt (1.7)

This Eq. expresses the fact that the elementary work of all the external forces equals
the sum of the increments in the kinematic energy of the fluid, the free energy of the
elastic strain, and the viscous energy dissipation. Let us write the first Jaw of thermo-

dynamics
dE + dU + d¥ = dA, + dQ

Here dU is the change in internal energ of a viscoelastic medium d¥ is the change
in its potential energy in the force field f,(3), dQ is the heat flux; as before, all the
quantities are referred to unit volume of the medium. Substituting dE from {7.2) herein,
and taking into account thatdAd, - d¥ = (, we obtain the heat flux Eq. in the form

dQ = dU + dA,
Using the expression dU = TdS + dF, and the representation of d4, from (7.3}, we
finally obtain

TdS = dQ 4+ Wdt (1.8)

L.et us note that if the elasticity of the considered medium is purely entropic in nature,
as is intrinsic to the majority of rubberlike materials, then we can comsider dU = 0 in all
the above equations. We then have

dF =~ TdS = dQ + Wit (7.9)

The presented energy relationships refer primarily to iscthermal flows of a visco-
elastic Maxwellian fluid. For other flows {adiabatic, say), corresponding relationships
may be obtained by standard means 1].

L.et us note the fundamental qualitative singularities of Maxwellian fluid flows con-
sidered herein. As can be shown, by considering concrete flows of this fluid, the obtained
rheological equation describes both the appearance of normal stresses in different flows, and
also that the flow curve is non-Newtonian (the dependence of the effective viscosity on
the shear velocity). It is hence essential that the first invariant of the tensor 7;j be always
zero for the considered model.

This means that if an additional tensile stress acts in some direction on the moving
fluid, then it equals the absolute value of the compressive normal stress acting in a per-
pendicular direction. For example, in plane stationary Couette flow the fluid is stretched
along the stream, and compressed in a direction perpendicular to the plates.

It is clear that these singularities of the considered medium are mainly connection
with the assumptions made in Section 5 informulating the tensor relations (5.7) and (5.8},
which result in a quadratic dependence of the free elasticity energy (7.5) on the compon-
ents of the Hencky tensor. A more complex expression can certainly be given for F, de-
pendent ob higher degrees of 4, say. Then the first invariant of the tensor r;; would turn
out to be nonzero in the general case, The choice of the function F corresponding to some
real class of viscoelastic media, as well as the extension of the simplest model to media
with discrete or continuous relaxation time spectrum is an independent problem.
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Let us just note that the rheological equations of Section 6 are very similar to that
obtained by De Witt [5] on the basis of a formal generalization of the linear Maxwell equa-
tion by using the Jaumann derivative. There is nothing surprising here, since De Wiit
postulated expressions for the elastic strain rate tensor components which differ from (3.3)
just by the absence of terms with Y¢ip in the right side. It could hence be expected that
both models should result in identicu? or very similar results in a number of cases.

In an analogous problem Oldroyd [2] also started from the relationshi (2.2), but he
identified the convective derivatives of the viscous and elastic strain tensors with the
tensors of the corresponding strain rates.

Considering the mixed or contravariant tensor components as unknowns, Oldroyd
obtained rheological equations describing a fluid with essential different properties [2].
This ambiguity would not have arisen in f2], had he used the correct relationships follow-
ing from [1] in place of the explicitly incorrect relationships of the type (2.1), written for
components with contravariant or mixed configuration of the indices. For example, for the
mixed components the additivity relationship is written as

il = efi]) + efil] — 26 el )

As a result of a computation based on this relationship, we arrive at equations which
differ from those obtained above by just multiplication by a contravariant metric tensor.
Moreover, Hooke’s law in the form (4.1}, which is incorrect for large elastic deformations,
is used in the Oldroys theory.
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