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The kinematics of viscoelastic fluids with additive deformations is considered. A kinematic 

relationship is obtained between the total and viscous strain rate tensors and the elastic 
strain tensor, which underlies the axiomatic construction of rheological models of sncb 
fluids. A representation is found for the components of the elastic strain rate tensor in 
terms of observed quantities, which permits an analysis of tbs change in different scalar 
characteristics due to a change in the elastic state of the fluid. The developed method is 
also applicable to the investigation of other continua with complex deformationa. The ob- 
tained results are later applied to construction of a nonlinear rbeological model of a com- 
pressible viscoelastic fluid of Maxwell type. 

The viscoelastic media considered below, whose total deformation at an arbitrary time 
can be represented as the sum of elastic (reversible) and .viscons (irreversible) deforma- 
tions. The viscous deformations are hence defined as residoal deformations with instantane- 

ous liberation of the medium from all elaatfc deformations. The qoestion of the physical 

realizability of such a proceaa is discussed below, and it is meanwhile sufficient that it 
can always be done meaningfully in a small neighborhood of the considered material 
element. Fixing some initial state in which the viscous deformations are assumed zero, the 
elastic components of the total deformation of the medium can be determined by an analog- 
ous means. 

1. Following Sedov [l]. let as define two coordinate systems in the volume filled with 
viscoelastic fluid: a fixed Eulerian reference system (xl] with basis vectors 9i and a 

Lagrange convective coordinate system {PI f rozen in the continoum element in such a 

manner that the valneo of ([ corresponding to different individual points of the medium, are 

time-independent. Investigating only the total deformations of the medinm, we consider two 

positions of the continuum relative to the 1~~) coordinate system, to which two different 

bases of the Lagrange .coordlnate system {%I correspond: 

1. An initial position with basis vectors 3,(1? ; in this basis definite fixed pointa 

correspond to individual points of the medium. 

2. A position of the deformable medium with basis vectors 3i(o). The disposition of 

the vectors ai relative to 3i”’ at a certain time determines the total deformation of the 

medinm accumulated up to this time. 

Motions of. continam elements associated only with the viacoas or only with the elastic 
components of tbe total deformations may also be considered formally. This permita the 
analysis of atill two other ‘intermediate’ positions of tbe contfnnam elements, to which two 
other bases of the Lagrange convective coordinate system will correspond [l]. 

1. A position of the medium which woald experience only, viscona deformations, with 
basis vectors ai@). The basis 3,(s) plays the part of initial basis with respect to elastic 
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deformationa and the part of final baoia with respect to the viscous deformations. The dis- 

position of the vectom a, @) relative to ai determines the viscous deformations of the 

madiom, and the diapomition of 3,(t) relative to ai the elastic deformationa. At each 
instant tlte poition (3) of the medium ia obtained from the position 0) by the process of 

inetentanaoea liberation of the mediam from all elastic deformations. 
2. A position (4) of the medinm, which undergoes the elastic total deformation com- 

ponents, can alao be considered analogously to the position @). The corresponding basis 

vcctore ai@) are the initial basim for the viscous. and the final basis for the elantic de- 

formations. 
It Se clear that representations of individual points of the medium with different mean- 

ingr, correspond to the positions t2), (s), (4) of the medium. 

For the lengtha of a small segment composed of the same continuum pointa, we have 

at different locations 

dr, = dES,(“), dsk* = g,j(“)dE’dEj, gijC”) = (3i(k)3j(~.) 1, /c = 1, Z,S, 4 

In conformity with the presence of four foondamental forms, the variooa tensors may be 

considered in four spaces governed by the various positions of the continuum elements and 

corresponding to the different bases of the Lagrange coordinate oyatem which have been 

lntrodnced[l].Let us establish the correspondence 

dS2” = gcj(“) dt’dk’ = gijdx’dzj, dss* = gij(3)dedEj = g,+Vld5[jl 

ds,’ E pijWdt$@ = gijd&&!j,, 
gtj = t3t3j) 

Hence, it ia seen that all the tensors introdnced in opacea (a), (3) and (4) can be 

considered simnltaneonsly as tensors defined in one basis 31, but as before, in different 
spacea corresponding to the fundamental forma & )2, &s2 and t&2. The qnantitiesd&) 

and d$‘l play the part .of components of the vectors drd anddrs in the basis 31. Similarly, 

all the tensors may also be referred to any other basis. 

Using the bases a*(‘), at(*) and .3rt3), let us introduce the total E, the elastic (E), 

and the vincoua [E] strain tensors by utilizing the relationships 

E c &ij3232’ = e&3’, E, = eti31’31j 

(E) = &(ij)32’3?j = e,,j,3’3’, (E)o = e(ijb3d33j 

WI = 
. . 

e[ij)33*33j = eiij13’3’, [El0 = E[ijJ31f31j (1.1) 

IQ = ‘/I (g{jc2) - gij”‘), etii) = ‘/a (gG’*) - gij’3’), F,(G] = ‘/* (gijc3) - gij”‘) 

Here the nubscript zero refers to the initial-state apacea for the appropriate deforma- 
tions. The qnantitica et], e(ii), e[ij] and efj, e(fn, E[ijl can be considered as functions 
of t and tm or I and x*. The Jacobian of the appropriate transformation is assumed not to 

be zero. Other tensora aaaociated with the total, elastic and viscous strains in different 
baaea and apacea may be determined analogously. 

Using the second poaoible method of describing the medium deformation, and introdac- 

ing the basea 31(l), 3,(‘), 3,(d), we obtain inatead of (1.1) 

(E’) = t(t~)3~‘3( = e(ij)3i3j, (E’),, = 
, t j ~(~~)3, 3, 

[E’] L- EI;j13*t3sj = e,*j1343j, 
# 

[E'~o= Ctijl34'34' (1.2) 

e(;j=lI/* (gd (4) - g*j(q el;jl = 'I* (g,j(*) - iqj(4)) 

The previoos axpreaaiona in (1.1) are valid for E, II& and eItj1 . 

Let uo note that, in geneml, Eftj) # e(tj)’ and rtItjl # elijI’. These assertiona follow 

directly from the nonoommotadvity property of finite deformationa. and they correspond 
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physicaIIy to the fact that the tensors fD aud (E’l chmcterirs the atate of differeat 
material fibers. The components of these tensors in the Euler basis should bs the fame 
because of the physical nniqueness of the deformation process. For definiteness, only the 
first method of describing the deformation is osed below as being more natural for the fonua- 
lation of rbeologlcal modsla of viscoelastic flnida. 

2. According to the definition (1.1). an identity sxpresidng mathematically the poatal- 
ate of edditivity of the deformations 

eI;r = %j) + s(ij) (2.1) 
holds for tbe tensor components ttif, gttn aud gitjl . 

This relationship has no tensor character in the sense that it is not satisfied for con- 
travariant or mixed componeats of the strain tensors. This ia associated with the fact that 
different metric tensors must be used to raise the indices in the different terms of (2.1). 
Rowever, upon passing from (tli to any other Lagmnge coordinate system, (2.1) tranmfonns 
according to the customary tensor rules. Let as note that the additivity relationship (2.1) 
does not generally hold for tbe quantities eij, e(il) and e[ilj. 

Considering (2.1) at close times, we obtain an equation for the incrementa of the 
components t?f~, t?(fn and gfif] in the time dt: 

de, = de(ij, + de(ijl 

(2.2) 

here El f.. .)/Dt is the symbol of coaveetive differentiation of the teaaor compoeeut 
with respect to time (for constant @9. Definitions of deil, decij, ad derrrl in terms 
of the corresponding derivatives in (2.2) follow from the reaalts in [I]. Let us note that 
these derivativea are tahen relative to different positions of the defonaabfe continaem, 
which is manifeated in the definitions of the correuponding tensor components in the Euler 
basis. 

Thug, by utilixing haown rules of tranafonuiag convective censor derivatives with 
respect to the time [I and 21, we obtain for tbe total strain rate tensor and for the quantities 
dell the following Formula: 

r = 7~“)3~3~’ -1 (ZI (e , -)/Dt) (~~32’32’) -_ ~$3’3 IL- {(a(_ . .)/dt -+ ~~G,_)eij + 

+ (ViU”) ed + ei,Vj Urn) 3’3’, d&ii = rij’*‘dt 

An aaaloaooe fonuala holds for the tensor (r)+ which has the componenta 0~~) / l)i 
in the basis ai@), and for the increments d&~t~) expressed in tens of these components. 

Converely, for the viscous etrain rate tensor aud the quantities dE~tjl we obtain tbe 
formal representations 

Hers rf”‘l are velocity components associated with the viacooe floid displacemeuts. 
As is kaowa [l], the partition of the total velocity ut , as wall as the ~tisymmet~c teasor 
Ott corresponding to the total vortex vector, into elastic (9 0 s f”(ij) and viscous dil. mltjl 
components is not anique. However, the qaantities Yitj) and V[ijl are uniquely defined. 
Only under this condition is it possible to speak of a specific physical (elastic, say) state 
of a medism. 

Therefore, from (2.2) we obtain the fundameatal kinematic relationship for the strsin 
rates 
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Let na emphasis0 that the $1 in this’relationahip are viscous strain rate tensor 
compcnarta in the basis at(e), and all the other quantities in (2.3) are tensor components 
in the buia a,@). 

Let ua introduce d# as componenta of the vector dr, = dt%ll(e) in the basis ZIi(“). 
The quantities d$ play the same part, in principle, as do the &Xi), and &Pl, introduced 

above. Introdoction of d# permits tranafonnation of tensors defined in a space correspond- 
ing to pcsition (3) of the deformable continaum, to the basis 3i(t) exactly as the intro- 

dnction of &h and o?zlil permitted transformation of the tensors defined in spaces fs) or 
(4) to the Euler basis. The quantities d$ and dfd are connected by affine transformation 

formulas [ 11 
d$ = C!;, dkm 

The matrix C entering here may be considered as a matrix defining the transformation 
of the basis vectors 
representation [l] 

ai -, 3,(t), referred to the same space. For it we have the 

C = eK (g(2) - 2 e)‘/s, C’ = (g(z) - 2 t)‘/z+, g(z) = ij gijW j, 8 = 11 .qijj u (2.4) 
Here K is an antisymmetric matrix corresponding to the vector of rotation of the 

principal elastic deformation axes, and the prime denotes the transposition operation. 
We have the following representation for the viacoas strain rate tensor components 

~$1 in the basis 3i(3) in terms of components of this tensor in the basis a,(2): 

y(3) =2 qwc yc4 zzz /I@] 1 (k ;:: 2,3) 

Substinting this into (2.3) wb obtain a relationship which may be considered as a 

tensor 

-5) 

The kinematic relationship (2.5) plays a fundamental part in the formalation of in- 

variant rheological eqaations. 

3. In addition to (2.5), the relationship [l] 

TCij) + T[ijl = Tij* rij = ‘I2 (Vivj + VjVi) 

Ttij) = ‘/2 (c7i”tj) + 77jy(i))t T[ijl = l/2 (Vi”[j] + Vjv[i]) (3.1) 

can be obtained independently. 
The eqnality (3.1) may also be considered as a tensor relationship, and in particular, 

it can be written for the strain rate tensor components in the basis ai( Evidently, rela- 

tionships (3.1) and (2.5) should agree becaase they contain the same information on the 
motion of the mediam. From (2.5) and (3.1) we then obtain the following tensor Eq. 

T[:i) = (D( * * .)/Dt!) E(ii) f C’;T”~~~,,,CYj‘ -,T[:~J (3.2) 

The quantities v$) are components of the elastic strain rate tensor (r) in the basis 

3it2). A s i s easily seen, the tensor (r) differs from the tensor (r)* introduced earlier, 

which is the kinematic characteristic of the motion associated with e change in both the 
elastic and viscous strains. This is becaose the tensor (E) itself describes the true elastic 
state of the material elementsof the medium embigaoasly. 

In fact, let us introdace the length elements dsJei (k = 2.3) along the i-th principal 
axis of the tensors fE3. and (EJ in appropriate spaces. It is clear that the differences 
ds,’ - ds,’ are uniqaely defined by the components E(U) of the tensors (E& end (EZ) in 

these axes. The elastic state of the medium is defined uniqaely by values of the principal 
elongation8 [ 11 

ds: - dsai 
%(i; = dS2 ’ 

_ -,dn$ dsn’ 

“ii) - ds3’ 

or the eigenvalaea 
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“w = ~“etii, , (i=i, 2, 3) 

of the tensors (E)u and (E), on which the qaantities x il0 
I 

and %ti) depend anionelv. It is 
easy to see that these quantities are fanctiona not on y of the differences ds,’ - dss’, hat 

also of the elements ds,t - ds,‘, which are determined equally by the development of 

viscoaa strains in the syatem. Hence, the quantities E,ij, may be considered aa repreaent- 
ative charsctsrfstics of the elastic state of the medium only when the viscous motions do 
not result in changes in the elementary lengths in the material, i.e., YfiiJ G 0. Correct 

expressions are obtained for Yet,), evidently, if Sctj,T is differentiated with the condition of 

invariant lengths of the vectors +t3), as well as the condition of constant trn, is imposed. 

or eqaivalently, the condition of constant diagonal components of the metric tensor g,‘[ in 
the principal axes of the tensors (E)u, (E). Let as note that rotations of the vectors 3((“’ 

relative to ai are not fixed in such a differentiation, and may be arbitrary becaase they 
do not affect the change in material lengths. 

Using reasoning similar to that which was used in introducing the Janmann derivative, 
we see that the correct valaes of 

hc ifi and Ytm (2) are obtained if it is formally considered 

that Y, 
the fol owing i 

=ycm in differentiating E(tj) and later passing to the Euler basis. We hence have 
equation for Yfr,, in the Euler basis: 

T(ij) z (alat + u”V7J e(ij) + e(itn) T{T;’ + &T;'e(,j) $- 

+ e(h) 4’ + wf?qti), Wij = l/t (ViVj - VjOi) 

The following representation 

P-3) 

Tltj) =- (u (' ' ')lD1)e(ij) - E(im)T[.j] 
wr.m1 

- rk!]m.lC(*j) (3.4) 

corresponds to (3.3) in the Lagrange basis 31(“) . 
Let as compare (3.2) and (3.4). To do this, we represent the matrices C and C’from 

(2.4) as 

c = (g(2) - 2 ()‘/I $- ( eK - g@))(gC2) - 2 t)'/* 

C' = (g(2) _ 2 c)'!* + (g(2) - 2 t)'l:(e-" _ g(2)) 

The first members in these expressions are independent of K, the second vanish an 
K + 0. We have the matrix eqaality 

C’yWC z (g(2) __ 2 e)‘.‘z [y(2) _$. y(?) (eK __ g(2)) -+- (e-K - g(2)) y(2) + 

+_ (e-K _ g(2)) y(?) (eK _. g(2)) J (g(Z) - 2 &)I’* 

In constructing rheological models the tensors (E) and [rl are expressed as tenmor 
fanctions of the same tensor T by using some kind of postulates. Hence, the matdceo L 
and Y(2) may be considered commatative. Then a comparison between (3.2) and (3.4) 

results in the Eq. 

(g(r) T 31 8)’ 1 [yC)(eK ~ g(2)) +- (e-K _ g(2))-+2) _I_ 

+ (e-K -- g(2))yM (eK - g'?))] (g(Z)__ 2 e)'!* = 0 
(3.5) 

Eq. (3.5) imposes definite constraints on the possible deformations in the system. 
Roughly speaking, (3.5) playa the part of the known compatibility equation for elastic (or 
viscous) deformation taken separately. In the general case of finite deformations (3.5) 
differs from that castomarfly ased in the geometrically nonlinear theory. Hence, the bases 
3i’3) and aif4) are generally introdaced into noneuclidean curved spaces coneapondfng 
to tbe situations of a deformable (3) and (4). Violation of the eaclidean conditions is 

eqoivalent to violation of the contfnaity of the mediam onder the above-mentioned conceptual 
process of freeing the medium from elastic strains. 

It is easy to see that the unloading process for which the viscous atrafns remain an- 
changed, is not realizable withoat violating the continuity of the medium. In fact. let aa 
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consider the complex of state of a viscoclastic fluid with additive strains. The state of a 
system consisting of a viscous fluid and an elastic strained sample submerged therein is 
a rough analog of such a state. 

Upon removal of the elastic strains, and under the condition that the position of the 
individual viscous fluid elements does not change here, we arrive at a state in which thera 
are cavities free of material, as well as sections which simultaneously contain both, fluid 
and elastic body. In other words, we arrfve at a apace having ‘holes’, which indeed make it 
noneuclidean. Analogoua reasoning on the eoclidean conditions of an ‘intermediate’ space 
is expounded In the modern theory of plasticity [I]. 

In proposing conservation of the continuity of the medium dnring the actual unloading 
process as a necessary condition, we see that the removal of stresses is possible only 
after a finite noazero time interval since this process is inevitably accompanied by addi- 
tiunal viscous strains. From the physical viewpoint, this means that only instantaneous 
removal of the external forces acting on the system is actually realizable. If a basis ai’, 

describing the position of the continuum after the actual unloading plocess, is introduced, 
then the unloading process itself may be interpreted as the motion of the bases &fa) and 
ai’* towards the basis 3,’ until coincidence. It follows from the above that the conseptual 
process used above for the liberation of the medium from elastic strains can generally be 
consistently detennined only locally. 

Let ua note that (3.5). and therefore, the representations (3.3) and (3.4) for the elastic 
strain rate tensor components also, can be obtained by completely independent means from 

(2.5) and (3.2) by utilizing physical invariance reasoning worked out in [2]. Indeed, accord- 
ing to the meaning of the rheological equation, it characterizes the procesaee occurring in 
a fixed material point moving as part of a continuum, and it should contain, in addition to 
material tensors and scalars, only observed dynamic and kinematic quantities connected 
(rigid) with just the given point of the continuum. In particular, th$ rheological equation 
should not depend on the parameters describing the rotation of the given material element 
during deformation, as well as the rotation of the whole continuum as a solid (rigid) unit, 

This is associated with the fact that the rotation of some particles of the medium depends 
essentially on the state of the adjacent particles of the medium. Applying this reasoning, 
we at once obtain (3.5) wfth all the resulting corollsriea. 

The relationships (2.51, (3.3) are utilized below to construct a rheological model of a 
compressible Maxwellian viscoelastic fluid with geometric and physical nonlinearity. A 
Maxwellian fluid is customarily defined as a medium with additive deformations, which are 
connected with the stresses in the flow by utilization of additionai postu1ate.s. 

4. It is customarily assumed (21 that the stress tensor p in the elastic element of a 

Maxwellian model is connected with the elastic strain tensor ‘b y a linear relationship 

pij = 2[tE(ij) (4.1) 

Here ~1 is the shear modulus of the fluid. The relative change in volume associated 

with the elastic strain, can be written as 

x = [(l- &) (i-2&*) (1--3&3)1-t’* - 1 (4.2) 

Here ei (i = 1, 2, 3) are the eigenvaluea of the elastic strain tensor in the Lagrange 

basis. 
In principle, as high a stress as desired can be realized in a viscoelastic medium. In 

particular, it can be considered that some eigenvalnes of the tensor pi1 are greater than 
!$u so that the corresponding quantities 2~~ are greater than unit. Recalling the definition 
of PE,ij) we see that the strain described by Hooke’s law (4.1) leads formalIy to a change 
in the signature of the metric tensor with all the resultant consequences. It is seen from 
(4.2). say, that in this case y. becomes complex. Analogous paradoxes results also from 
an attempt to conalder energy processes in viscoelastic fluid flows. 

Moreover, it is known that even for a generalized elastic shear strain the condition of 
conservation of the specific volume [3] should be satisfied. It follows from (4.1) and (4.2) 
that this natural requirement is not satisfied for finite deformations. For example, for 
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simple shear we have 
x = [i-(pr / p)r]-“’ - f # 0 

Here pt and -pl are eigenvalues of the stress tensor. 
Even for small elastic deformations the assumption that the given viscoelastic medium 

possesses a multilateral compression modulus exactly equal to 2/3/.t actually corresponds 
to (4.1). Taking into account that real media possess a shear modulus on the order of IO’- 

10’ dyne/cm’, we see that this assumption is equivalent to an assumption on very high 
compressibility of the medium. The compressibility of viscoelastic media in experiments 

is quite negligible, even at the pressure p >> cc. 
The latter difficulty of a Maxwellian model is closely connected with the problem of 

describing an incompressible viscoelastic fluid. It can be considered ‘incompressible’, 
I.e., as not resulting in a change in specific volume, the total strains in the flow, or this 
requirement can be referred just to the viscous member of the total strains. 

In the first case it must be implicitly assumed that, in general, the relative change in 

volume during elastic deformation is cancelled by a change in specific volume of opposite 
sign, which is connected with the viscous strain and occurs because of the effect of some 
additional physibal factor. 

In the second case it is assumed that the stngle reason for a possible change in 

specific volome, i.e., in compressibility of the medium, will be the elastic strains. The 

first hypothesis requires the introduction of some new compressibility mechanism, differ- 
ent from elastic strain (for example, the explicit consideration of structural changes in the 
moving fluid). The second hypothesis is perfectly natural within the scope of the expounded 
scheme, has sufficiently strong physical foundations, and can be formulated by analogy 
with the same hypothesis in the hydrodynamics of an incompressible viscous fluid. 

Therefore, the necessity arises to replace the linear relationship (4.1) by some more 

adequate relationship without resulting in physical paradoxes. Let us note that, in principle, 
even Newton’s law postulated for a viscous element, may be replaced by some nonlinear 
relationship between the stress tensors and the viscous strain rates. However, it can be 
assumed that such a substitution does not substantially affect the quality of the considered 
viscoelastic media, and leads only to a quantitative change in the characteristics of vari- 
ous flows. 

5. Let us represent the stress tensor pi, as 

Pij = - Pdnij 4. Tijp PI = - - 3p c I’, (5.1) 
Here pI and T, are the first invariants of the tensors pl, and ri,, g,, are metric tensor 

components. The tinat member on the right side of (5.1) describes purely reversible ‘ideal’ 
transfer of momentum in the system, and the second member defines the irreversible ‘visc- 
ous’ transfer of momentum. The most general linear relationship between r r, and the viscous 
strain rate tensor y[ti~ are 

Here q snd [are the fluid viscosity coefficients. As will be seen below rt I 0. Hence 

it follows Tt = 3<rt I 0. Taking the latter into account, we obtain Newton’s law to con- 

nect the tensors~[~j! and rij in the form 

The natural extension of (4.1) to a body with arbitrary continuity is represented in the 

physically linear theory by the relationship 

The hnlk modulus K im defined in terms of the Lame coefficient, x and p in such a way 
that the relative change in volnme connected to the second member on the right side of (5.3) 
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would equal xero identically for small deformations. It is possible to attempt a generaliza- 

tion of (5.3) to elastic incomprssaible media with finite deformations by repIacing the first 

invariant RI of the tensor pff in (5.3) by a fnnction of all three invariants Pf of this tensor 
such that the second member in the modified dependence (5.3) would not, as before, result 
in a change in tbs @pacific volume. This fnnctioa has the meaning of a Lagrange multiplier 
in some variational problem [l]. Replacing 1/3P, in (5.3) by j(P1) and allowing K +m, we 
obtain tha incompressibility condition as 

(f--2% ) (f--Z&,) (i--2&3 = 1 

Introducing the nondimensional parameters f = pi, pij = ~nij and the invariants 

II, = n, + J% + fT3. l-I, = ntna + J-C& t- IQXi, II3 .= Jt,3t&j 

weobtain an equation for g, 

qP + (3 - fit)@ -!- (3--2If, -!- &Ja, - (lI, - III + fl,) = 0 (5.4) 

It is clear that it is necessary to take the root v of this equation which equals l/311, 

for flf *: 1. It is easy to see that the strain described by the modified relationship (5.3) 
nsnfts, as before, in a change in the signature of the metric tensor. For exampIe, let 
xi = I, xx =3Xx = - ‘Izr, so that fl, z 0. Thea in the particular case x = - 3, (5.4) has 

the solution cp ~0, and 1-2~~ < 0, 1-2 E, < 0, which also denotes a change in signature. 
Moreover, if the finite modulus K is again introduced, the pure shear strain results, as 
before, in a change in the specific volume. Hence, the considered pheaomenological 
method of extending (5.3) to a system with finite defo~ations does not result in obtaining 
a consistent relation between the stress and elastic strain tensors. 

Let the free energy of unit volume of a solid in the deformed state be F (&;I). Con- 
sidering a change dF in the quantity F for a change &;j in the elastic strain tensor, let 

us write 

dF = &de!; + ‘,fz h &f) (de!;)2 _i- p @if) dcf;d& (5.5) 

To simplify the writing, the parentheses in the subscript notation of the elastic strain 

tensor have been omitted here and below. 
This expression is simply a series expansion of the increment in free elastic strain 

energy in the neighborhood of some deformed state characterized by the quantities ci.*j_ 

The possibility of selecting such a state as initial has been stressed in [I]. Evidently if 

&I? == 0, i.e., a state in which there are no strains or residual stresses, has been selected 

as initial state, then the first term drops out in the right side of (5.5). 

In principle, the most different forms of the function F can be utilized. We assume here 
that the coefficients X and p in (5.5) are constants. This assumption is equivalent to postul- 
ating ‘homogeneity’ of the relative strains, their independence of the strain in the undeformed 
state of the material. Applying standard methods to (5.5). we obtain 

(5.6) 

In contrast to (5.3). which expresses the linearity of the strain process as a whole, 

the relstionship (5.6) expresses the linearity of this process in the small. If this rela- 
tionship were to admit of direct integration. the linear law (5.3) would tben be obtained, or 
in the particular case K = 2/3~, the law (4.1). In the general case of finite deformations, 
such integration is impossible, because of the nonadditivity of the increments dg;j in 
successive deformations [I]. 

Let us formally represent the elastic strain process as a process passing through such 
intermediate states that the tensors ei j* in these states have the same principal axes as 
the tensor Eij in the final deformed state. From (5.6) we have the following Eq. with 

reference to the principal axes: 
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Here Ii’ is the length of some linear element along the i-th principal axis in the inter- 
mediate deformed state, which equals 13 in the initial and I, in the final state. Integrating 
this eqnatlon we obtain 

li 3 lioeXp 
[ 

- +g + zLP (I)i - p) 1 
Using the definition of the relative elongations of material elements along the principal 

axes in terms of eigenvalues of the elastic strain tensor in the final state. and transfonn- 
ing from the eqnation for et to the corresponding tensor equation, we obtain the following 

equation connecting Eii and p, in the convective basis associated with the final deformed 
state: 

Completely analogously, we obtain for the elastic strain tensor E. defined in the space 

of initial states 

E. = 1/2 (e?Iro - Go) (5.S) 

The inverse relationships to (5.7) are (5.!1] 

II =: ---,1/: In (G - 2 IS), Y =: -p In (G -- ~hj + 3 ;cpG, a = ‘,‘,(‘J,I_L,IJ;-- 1) 

The ‘true’ strain tensor H has repeatedly been utilized earlier in the theory of finite 
elastic deformations, in particular, Hencky postulated a linear connection between P and H. 
From (5.9). we have for the first invarionts P, and El of the tensors pi, and eii 

I’--3p~=-~(1f331)~11nj(~-22,)(~1-2~,)(l---2~,)J 

Et -_ 11~ (3 ._ e-?“, _ @, __ &‘,), Jti == (2 CL)-’ (pi - 3 ap) (5. to; 

The compressibility of a viscoelastic medium characterized by the relationships (5.7) 
to (5.10) is determined entirely by the magnitude of the mcdulus K when the hypothesis 
used in Section 4 that the sole riason for the change in the specific volume of a medium is’ 
its elastic strain, is satisfied. It is sufficient to consider just the hydrostatic compression 

of such a material. For pi = - p (i = 1, 2, 3) we have 

&l==Ej==Q”-- +_cx& 
) 

) x -= ml, -+ 1 

On the other hand, the shear strains do not generally cause a change in volume for any 
K. as should be. For example, for simple shear we obtain 

E1 _- L 1 - erI’Z& 
L ( 1 P ’ 

e:!=+ I- cxpy ) 
( 1 

PJ - 0, x I. 0 

Evidently the eigenvalues of the tensor H are always negative, so that the paradoxes 

associated with the change in signature of the metric tensor do not generally arise in this 
case. 

6. Utilizing the results of Section 3, let us represent the kinematic relationship (2.5) 
as 

(8 I al + u’“Vm) eij 4 EimVj~m + (Vi,““) enrj + 

+ (6i” - 2C;?) N 6 [mjJ == Tij = ‘/z (ViUj + VjL’,) (6.1) 

Electring the elastic strain tensor components and the velocities of total displacement 
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of the medium as governing variables, we obtain a rheological equation from (6.1) when 
(5.2) attd (5.9) srt taken into account 

2TJ ((B/al $ Urnmdm) eij $- ei,Vju m -t (5 iUrn) e,j] - 

- p (tS$tm - 2ei..“) {In (G --. 2Jl)},,j -$- (1 -k 3;O p (di, -- 2&i]) 7 211*;i; (6-Z) 

Taking account of the definition of E in terms of P or T according to (5.71, it is also 

easy to obtain a rheological equation in terms of the variables pij or rii from (6.2). 

The components of the Hencky tensor H can be expressed in terms of ei, by utilizing 
the Lagrange-SyIvester formulas. Moreover, using the Hamilton-Cayley theorem, we arrive 

at a quadratic equation in el, (or in it,, r, r ) with coefficients dependent on invariants of 
the tensor E. 

For small elastic strains the tensor H may be expanded in a series in E. We then 
obtain an approximate from (6.2) 

(6.3) 

Or in terms of rt,, 
ing from (5.7)) 

this Eq. is (we use the approximate relationship JI ==: E) follow- 

8 I (a/at -i- Un’~‘m) Pij’ -C Pi,‘GjV” -i’ (‘v iUrn) ~,,j’I t- 

-t- (Ei” - Il-‘p’~~) T,,j :: 3’1yij, Pij’ = Ti, - (I -k 3~t) P&‘i, 

Here 8 is the single relaxation time of the fluid. 
For an incompressible fluid K -B m and Q = - l/3. Ffence, (6.2) becomes 

(GA) 

2rf [(a/al fvmV,leij i-eimVj~m t-(VJiv”)e,] - 

- p (q - 2e;m) (In (G - 2~))~~ == 21yij 

For an incompressible fluid (6.4) is written in the form 

9 [(a/a’ 1- ‘mVrn) ~ij -i- Si,,l~jun’ -_I- (Vivm) T,jl -1. (6 m 

i 
-, p-‘Tfy) Tmi = 2TfTij 

It can be expected that the compressibility of a viscoelastic medium will tom out to 

be_psrticularly essential for the investigation of the stability of various stationary flows 
because it may, in principle, cause the appearance of elastic compression-rarefaction 
waves, different from acoustic waves, in the flow, which may in turns stimulate the develop 
ment of the customary hydrodynamic instability. A possible role of the effects of compres- 
sibility in the development of hydrodynamic instability in viscoelastic fluid flow is dis- 

cussed in [4]. 
Let us note that the quantity p introduced in (5.1) and playing the part of the effective 

external pressure is in the rheological equation. This is connected with the fact that for a 
nonlinear dependence between the elastic strains and the stresses, the capacity of the fluid 
to further absolute elastic strain depends on the already existing strains. This latter permits 
the comprehension, to some degree, of known experiments on stabilization of viscoelastic 
fluid flow with the rise in external pressure. 

Let us turn to the kinematic relationship (6.1) with the tensor gij. Taking account of 
(3.3), we hence obtain the equality 

ij ii 
. . 

6 c((ij! + g Y~ijl Tr aY”Tij (6.5) 
The right side here is the rate of change of the specific volume of fluid, the first and 

second terms in the left side of (6.5) are the rates of change in specific volume due to the 
elastic and viscous strains, 

rl = gi’y~ijl _ 0 

respectively. According tq the assumptions made in Section 4, 
, which justifies the formulation of Newton’s law in the form (5.2). The 

first member on the left side of (6.5) satisfies au equation which results from (3.3) 
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g*jT,,, = (a / dt + UmVm) gijetj + 2$jei,~$;) 

It is hence seen that g”y(i,) = g’jyi,‘, where yl,’ satisfy the matrix Eq. 

(G - 2E) y’ == (3 / at + u”‘v,,,) E, Y’ = /I Yij’a 

y’ =1 (G - 219-t (a/at + u”‘v,,,) E 
w-9 

Here it haa explicitly been taken into account that the metric tensor of the Euler 

coordinate system is independent of time. 

For the flnid density p , we therefore have Eq. 

i -_ 
P ( 

;t + u” &) p - - gijycij) == - {(G - 2r:)-‘}” (~ -t u~V~) eij (6.T) 

Eq. (6.7) plays the part of the thermodynamic equation of state of a viscoelaatic 

medium. Let us note that by virtue of (6.5). Eq. g’l~fijl = 0 follows directly from (6.7) 

and the continuity equation for the total deformations ot a viscoelastic fluid. 

7. Besides the rheological equation, we have the dynamic Navier-Stokes equations 

and the continuity equation for the description of viscoelastic fluid motion. In the Euler 

coordinate system they are: 

It is easy to see that (7.1) together with (6.2) and (6.7) form a complete system of 

equations to determine the ten unknowns vi, r,, , p and p which describe the mechanical 

behavior of the medium. There are in all five independent quantities rij since they are 

connected by the condition TI = 0 which follows from Eq. $lyliil = 0. 

From the first equations of (7.1). we obtain by the customary means t11 , an energy 

equation in which all the quantities are referred to unit volume of medium 

Here dE is the change in kinematic energy of the fluid, dA, is the work of all the 

external forces, where dA ‘is the work of the external surface forces, dAl the work of the 

potential volume forces, and dA, the elementary work of the internal surface forces. The 
quantities fi(f) and f,df are the nonpotential and potential mass forces, respectively. 

Taking account of (3.3) we obtain from (6.1) 

- d-4, : p*jyij dt r= p”ytij, dl + Pi!Tfij, dt (7.3) 

The first member on the right side of (7.3) is the elementary work of the internal 

stresses on the elastic strains of the medium and equals the increment dF in the free 

energy of elasticity. The second member on the right in (7.3) describes viscous cmergy 

dissipation Wdt. Using (5.2). weobtain an expression 

The identity gi’Tij 

II; = (2q)-l p%ij r (zrl)-l rijrij 
(7.4) 

‘- g”Ylijl s 0 was also taken into accouot here. 

For the increment in free energy of elasticity, we obtain from (3.3) 

dF = pijytij, dt = p’j (a / i9t -I- u”Q,J e,,dt $- Z!~‘je,,~$r;;.) dt 
As in Section 3. it is easy to see that p’?y(,j, L- p’ y(ij,‘, where the matrix of the 

coefficients of yr, ‘is determined by (6.6). Hence, we have 

dF = p”{(G - 2l3-qjy (a / at -i A,/ I) en,i tlr 
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herting the components hrj of the tensor H from (5.91, we hence obtain 

dF = 2$L” dkii + 33pgii dht, (7.5) 
In particular, from (7.5) follows the free enirgy Eq. 

F = const -/- p (hl? + hgS + h3?) + 3rp (h, -+- h, + ha) (7.6) 
Here h 1 me eigenvetaee of the tensor H defined in (5.10). For an incompressible fluid 

the last members in (7.5) and (7.61 vanish since the sum of the quantities ht equals xe~ 
for U = - 113. 

ft is analogously easy to determine the other thermodynamic functions associated with 
the elastic strain. 

Substituting (7.3) into the energy equation (7.21, we obtein a new Eq. 

dA, + dA, =: dE + dJ’ + Wdt (7.7) 
This Eq. expresses the fact that the elementary work of all the external forces equals 

the sum of the increments in the kinematic energy of the fluid, the free energy of the 
elastic strain, and the viscoos energy dissipation. Let us write the first law of thermo- 

dynamics 
dE -I- dU _1- dy’ =1 d/l, -+ dQ 

Here dll is the change in internal ever of a viscoelastic medium d\V is the change 
in its potential energy in the force field f (8:. dQ is the heat flux; as before, all the 

quantities are referred to unit volume of t fi e medium. Substituting dE from (7.21 herein, 
and taking into account that dA, + d’J’ -= 0, we obtain the heat flux Eq. in the form 

dQ=dU+dA, 
Using the expression dU = ?‘dS + dF, and the repreeentation of dAJ from (7.31, we 

finally obtain 

TdS =I: dQ -j- Wdt (7.8) 

Let us note that if the elasticity of the considered medium ia purely estropic in nature, 

as is intrinsic to the majority of mbberlike materials, then we can consider dU z 0 in all 
the above equations. We then have 

dF z TdS = dQ + W’dt (7.9) 
The presented energy relationships refer primarily to isothermal flows of a visco- 

elastic Maxwellisn fluid. For other flows (adiabatic, say), corresponding relationships 

may be obtained by standard means (11. 
Let us note the fundamental qualitative singularities of Maxwellian fluid flows con- 

sidered herein. As can be shown, by considering concrete flows of this fluid, the obtained 
rheoiogical equation describes both the appearance of normal stresses in different flows, and 

also that the flow curve is non-Newtonian (the dependence of the effective viscosity on 
the shear velocity). It is hence essential that the first invariant of the tensor ri, be always 

zero for the considered model. 
This means that if an additional tensile stress acts in some direction on the moving 

fluid, then it equals the absolute vafue of the compressive normal stress acting in a per- 
pendicular direction. For example, in plane stationary Couette flow the fluid is stretched 
along the stream, and compressed in a direction perpendicular to the plates. 

It is cIeer that these singularities of the considered medium are mainly connection 
with the assumptions made in Section 5 informulating the tensor relations (5.71 and (5.81. 
which result in a quadratic dependence of the free elasticity energy (7.5) on the compon- 
ents of the Hen&y tensor. A more complex expression can certainly be given for F, de- 

pendent on higher degrees of hi, say. Then the first invariant of the tensor rij would turn 
out to be nonzero in the general ease. The choice of the function F correeponding to some 
real class of viscoelutic media, as well as the extension of the simplest model to media 
with discrete or continuous rslaxation time l pectmm is an Independent problem. 
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Let ns jaat note that the rheological eqaations of Section 6 are very similar to that 

obtained by De Witt [S] on the besim of a formal generalization of the linear Maxwell equr 
tion by using the Janmann derivative. There is nothing eurprleing here, mince De Witt 
poetalatcd expreeeione for the elastic etrain rats teneor components which differ from (3.3) 
just by the absence of terms with ycr in the right side. It conld hence be expected that 
both models should result in identica or very similar results in a number of cases. Y 

In an analogous problem Oldroyd [2] also started from the relationshi (2.2). but he 
identified the convective derivatlvee of the viscose and elastic strain teneore with the 
tensors of the corresponding strain rates. 

Coneidering the mixed or contravariant teneor componente ae onknowns, Oldmyd 
obtained rheological equations deecribin a fluid with essential different properties [2]. 

This ambi 

$ 

ity would not have arisen in f 21, had h e need the correct relationships follow- 
ing from [l in place of the explicitly incorrect relationships of the type (211, written for 

components with contravariant or mixed configuration of the indices. For example, for the 
mixed componente the additivity relationship is written as 

Ao a reenlt of a computation baaed on this relationehip, we arrive at equations which 

differ from thoee obtafned above by jnet multiplication by a contravariant met& tensor. 
Moreover, Hooke’s law in the form (Cl), which is incorrect for large elastic deformationa, 
is used in the Oldroys theory. 
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